186 research outputs found

    Towards a Democratic New Normal? Investor Reactions to Interim-Regime Dominance during Violent Events

    Get PDF
    Although interim regimes in former autocracies are generally tasked with initiating a democratic ‘new normal’, they may privately intend to become their country’s new autocratic rulers. We argue that, to cope with the uncertainty stemming from this possibility, investors infer an interim regime’s intentions from the dominance displayed by the regime during government-related violence, as reflected in the share of civilian fatalities. Specifically, we propose that investors interpret highe

    Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics

    Get PDF
    Continuous adhesion formation and disassembly (adhesion turnover) in the protrusions of migrating cells is regulated by unclear mechanisms. We show that p21-activated kinase (PAK)–induced phosphorylation of serine 273 in paxillin is a critical regulator of this turnover. Paxillin-S273 phosphorylation dramatically increases migration, protrusion, and adhesion turnover by increasing paxillin–GIT1 binding and promoting the localization of a GIT1–PIX–PAK signaling module near the leading edge. Mutants that interfere with the formation of this ternary module abrogate the effects of paxillin-S273 phosphorylation. PAK-dependent paxillin-S273 phosphorylation functions in a positive-feedback loop, as active PAK, active Rac, and myosin II activity are all downstream effectors of this turnover pathway. Finally, our studies led us to identify in highly motile cells a class of small adhesions that reside near the leading edge, turnover in 20–30 s, and resemble those seen with paxillin-S273 phosphorylation. These adhesions appear to be regulated by the GIT1–PIX–PAK module near the leading edge

    Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources

    Get PDF
    AbstractA Pseudomonas aeruginosa AK6U strain produced rhamnolipid biosurfactants to variable extents when grown on MgSO4 or organosulfur compounds as sulfur sources and glucose as a carbon source. Organosulfur cultures produced much higher biosurfactants amounts compared to the MgSO4 cultures. The surface tension of the growth medium was reduced from 72mN/m to 54 and 30mN/m in cultures containing MgSO4 and 4,6-dimethyldibenzothiophene (4,6-DM-DBT), respectively. AK6U cultures produced different rhamnolipid congener profiles depending on the provided sulfur source. The dibenzothiophene (DBT) culture produced more diverse and a higher number of rhamnolipid congeners as compared to the DBT-sulfone and MgSO4 cultures. The number of mono-rhamnolipid congeners in the DBT culture was also higher than that detected in the DBT-sulfone and MgSO4 cultures. Di-rhamnolipids dominated the congener profiles in all the analyzed cultures. The sulfur source can have a profound impact on the quality and quantity of the produced biosurfactants

    MarkUs: a server to navigate sequence–structure–function space

    Get PDF
    We describe MarkUs, a web server for analysis and comparison of the structural and functional properties of proteins. In contrast to a ‘structure in/function out’ approach to protein function annotation, the server is designed to be highly interactive and to allow flexibility in the examination of possible functions, suggested either automatically by various similarity measures or specified by a user directly. This is combined with tools that allow a user to assess independently whether or not a suggested function is consistent with the bioinformatic and biophysical properties of a given query structure, further allowing the user to generate testable hypotheses. The server is available at http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:Mark-Us

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Creating an Antibacterial with in Vivo Efficacy: Synthesis and Characterization of Potent Inhibitors of the Bacterial Cell Division Protein FtsZ with Improved Pharmaceutical Properties

    Get PDF
    3-Methoxybenzamide (1) is a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 1 are potent antistaphylococcal compounds with suboptimal drug-like properties. Exploration of the structure-activity relationships of analogues of these inhibitors led to the identification of potent antistaphylococcal compounds with improved pharmaceutical properties

    Paxillin Dynamics Measured during Adhesion Assembly and Disassembly by Correlation Spectroscopy

    Get PDF
    Paxillin is an adaptor molecule involved in the assembly of focal adhesions. Using different fluorescence fluctuation approaches, we established that paxillin-EGFP is dynamic on many timescales within the cell, ranging from milliseconds to seconds. In the cytoplasmic regions, far from adhesions, paxillin is uniformly distributed and freely diffusing as a monomer, as determined by single-point fluctuation correlation spectroscopy and photon-counting histogram analysis. Near adhesions, paxillin dynamics are reduced drastically, presumably due to binding to protein partners within the adhesions. The photon-counting histogram analysis of the fluctuation amplitudes reveals that this binding equilibrium in new or assembling adhesions is due to paxillin monomers binding to quasi-immobile structures, whereas in disassembling adhesions or regions of adhesions, the equilibrium is due to exchange of large aggregates. Scanning fluctuation correlation spectroscopy and raster-scan image correlation spectroscopy analysis of laser confocal images show that the environments within adhesions are heterogeneous. Relatively large adhesions appear to slide transversally due to a treadmilling mechanism through the addition of monomeric paxillin at one side and removal of relatively large aggregates of proteins from the retracting edge. Total internal reflection microscopy performed with a fast acquisition EM-CCD camera completes the overall dynamic picture and adds details of the heterogeneous dynamics across single adhesions and simultaneous bursts of activity at many adhesions across the cell

    PIPKIγ Regulates Focal Adhesion Dynamics and Colon Cancer Cell Invasion

    Get PDF
    Focal adhesion assembly and disassembly are essential for cell migration and cancer invasion, but the detailed molecular mechanisms regulating these processes remain to be elucidated. Phosphatidylinositol phosphate kinase type Iγ (PIPKIγ) binds talin and is required for focal adhesion formation in EGF-stimulated cells, but its role in regulating focal adhesion dynamics and cancer invasion is poorly understood. We show here that overexpression of PIPKIγ promoted focal adhesion formation, whereas cells expressing either PIPKIγK188,200R or PIPKIγD316K, two kinase-dead mutants, had much fewer focal adhesions than those expressing WT PIPKIγ in CHO-K1 cells and HCT116 colon cancer cells. Furthermore, overexpression of PIPKIγ, but not PIPKIγK188,200R, resulted in an increase in both focal adhesion assembly and disassembly rates. Depletion of PIPKIγ by using shRNA strongly inhibited formation of focal adhesions in HCT116 cells. Overexpression of PIPKIγK188,200R or depletion of PIPKIγ reduced the strength of HCT116 cell adhesion to fibronection and inhibited the invasive capacities of HCT116 cells. PIPKIγ depletion reduced PIP2 levels to ∼40% of control and PIP3 to undetectable levels, and inhibited vinculin localizing to focal adhesions. Taken together, PIPKIγ positively regulates focal adhesion dynamics and cancer invasion, most probably through PIP2-mediated vinculin activation

    High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells

    Get PDF
    Focal adhesions (FAs) are macromolecular complexes that provide a linkage between the cell and its external environment. In a motile cell, focal adhesions change size and position to govern cell migration, through the dynamic processes of assembly and disassembly. To better understand the dynamic regulation of focal adhesions, we have developed an analysis system for the automated detection, tracking, and data extraction of these structures in living cells. This analysis system was used to quantify the dynamics of fluorescently tagged Paxillin and FAK in NIH 3T3 fibroblasts followed via Total Internal Reflection Fluorescence Microscopy (TIRF). High content time series included the size, shape, intensity, and position of every adhesion present in a living cell. These properties were followed over time, revealing adhesion lifetime and turnover rates, and segregation of properties into distinct zones. As a proof-of-concept, we show how a single point mutation in Paxillin at the Jun-kinase phosphorylation site Serine 178 changes FA size, distribution, and rate of assembly. This study provides a detailed, quantitative picture of FA spatiotemporal dynamics as well as a set of tools and methodologies for advancing our understanding of how focal adhesions are dynamically regulated in living cells. A full, open-source software implementation of this pipeline is provided at http://gomezlab.bme.unc.edu/tools
    corecore